1,216 research outputs found

    Feeding behaviour of larval European sea bass (Dicentrarchus labrax L.) in relation to temperature and prey density

    Get PDF
    The feeding behaviour of larval European sea bass (Dicentrarchus labrax, L.) was analysed in relation to temperature and prey density under controlled laboratory conditions with the aim to assess the ability of larval fish to change the feeding tactic as a response to environmental changes. Larvae were acclimated for 20 days at three different temperatures (19, 22 and 26°C), and their feeding behaviour was then video-recorded in experimental trials, at two prey densities, consisting of swarms of 400/l and 1440/l Artemia nauplii. Results showed that there was a significant effect of the interaction between temperature and prey density on the proportion of swimming activity that was reduced at the high temperature-high prey density combination. This suggested a switching in the larval feeding behaviour from an active to an ambush tactic, when the temperature reached 26°C and the prey density was 1440 /l Artemia nauplii. These results are consistent with the current literature on fish larval behaviour in showing that the foraging tactic can be modulated by the interaction of different abiotic and biotic factors characterising the rearing environment

    Manual operacional para levantamento, detecção, monitoramento e controle de moscas-das-frutas.

    Get PDF
    Conceitos gerais de um programa de monitoramento; Operacoes de campo (monitoramento); Atividades de campo e sua organizacao; Tipos de armadilhas; Tipos de atraentes; Alternativa de controle.bitstream/CNPAT-2010/6541/1/Ci-009.pd

    Local structural studies of Ba1−x_{1-x}Kx_xFe2_2As2_2 using atomic pair distribution function analysis

    Full text link
    Systematic local structural studies of Ba1−x_{1-x}Kx_xFe2_2As2_2 system are undertaken at room temperature using atomic pair distribution function (PDF) analysis. The local structure of the Ba1−x_{1-x}Kx_xFe2_2As2_2 is found to be well described by the long-range structure extracted from the diffraction experiments, but with anisotropic atomic vibrations of the constituent atoms (U11U_{11} = U22≠U33U_{22} \ne U_{33}). The crystal unit cell parameters, the FeAs4_4 tetrahedral angle and the pnictogen height above the Fe-plane are seen to show systematic evolution with K doping, underlining the importance of the structural changes, in addition to the charge doping, in determining the properties of Ba1−x_{1-x}Kx_xFe2_2As2_2

    Solid-state Nonlinear Optical Properties of Mononuclear Copper(II) Complexes with Chiral Tridentate and Tetradentate Schiff Base Ligands

    Get PDF
    Salen-type metal complexes have been actively studied for their nonlinear optical (NLO) properties, and push-pull compounds with charge asymmetry generated by electron releasing and withdrawing groups have shown promising results. As a continuation of our research in this field and aiming at solid-state features, herein we report on the synthesis of mononuclear copper(II) derivatives bearing either tridentate N2O Schiff bases L(a-c)- and pyridine as the forth ancillary ligand, [Cu(La-c)(py)](ClO4) (1a-c), or unsymmetrically-substituted push-pull tetradentate N2O2 Schiff base ligands, [Cu(5-A-5'-D-saldpen/chxn)] (2a-c), both derived from 5-substituted salicylaldehydes (sal) and the diamines (1R,2R)-1,2-diphenylethanediamine (dpen) and (1S,2S)-1,2-diaminocyclohexane (chxn). All compounds were characterized through elemental analysis, infrared and UV/visible spectroscopies, and mass spectrometry in order to guarantee their purity and assess their charge transfer properties. The structures of 1a-c were determined via single-crystal X-ray diffraction studies. The geometries of cations of 1a-c and of molecules 2a-c were optimized through DFT calculations. The solid-state NLO behavior was measured by the Kurtz-Perry powder technique @1.907 µm. All chiral derivatives possess non-zero quadratic electric susceptibility (χ(2)) and an efficiency of about 0.15-0.45 times that of standard urea

    Experiments and modeling of the growth of C. sorokiniana in lab batch and BIOCOIL photobioreactors for lipid production

    Get PDF
    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of C. sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using a BIOCOIL operated in fed-batch mode. The experimental results have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Furthermore, the fatty acid methyl esters obtained by transesterification of lipids extracted from C. sorokiniana, have been analysed in view of the assessment of their usability for producing biofuels. Subsequently, on the basis of the fatty acids profile, a wide range of biodiesel fuel properties have been predicted through suitable software

    A combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C_22H_14

    Full text link
    We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C22_{22}H14_{14}) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak (γp=0.1\gamma_p=0.1) is much lower than the effective value (γd=0.8\gamma_d=0.8) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.Comment: Replaced with final version (PRB

    Evidence of a pressure-induced metallization process in monoclinic VO2_2

    Full text link
    Raman and combined trasmission and reflectivity mid infrared measurements have been carried out on monoclinic VO2_2 at room temperature over the 0-19 GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence obtained for both lattice dynamics and optical gap shows a remarkable stability of the system up to P*∼\sim10 GPa. Evidence of subtle modifications of V ion arrangements within the monoclinic lattice together with the onset of a metallization process via band gap filling are observed for P>>P*. Differently from ambient pressure, where the VO2_2 metal phase is found only in conjunction with the rutile structure above 340 K, a new room temperature metallic phase coupled to a monoclinic structure appears accessible in the high pressure regime, thus opening to new important queries on the physics of VO2_2.Comment: 5 pages, 3 figure

    Vibrational spectrum of solid picene (C_22H_14)

    Full text link
    Recently, Mitsuhashi et al., have observed superconductivity with transition temperature up to 18 K in potassium doped picene (C22H14), a polycyclic aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis indicate the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab-initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unanbiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples
    • …
    corecore